If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+6x-5=0
a = 12; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·12·(-5)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{69}}{2*12}=\frac{-6-2\sqrt{69}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{69}}{2*12}=\frac{-6+2\sqrt{69}}{24} $
| 5x+29+9x-7=180 | | 15x-12=40 | | 4.5w=8.325 | | 78-x+84-3x=180 | | 44=4m+16 | | 8.25/0.65=x | | (7/2)(2/7)m=(5/14)(7/2) | | 3x-18=2(5x+4)-5 | | 3x-7+2x=180 | | 2x+147=125 | | -5x-6=12x+62 | | 32x+116=180 | | 23v+65=180 | | -3v+15v+7=8v=43 | | (2x^2+7)3=7 | | x+14=5x+19 | | 90+51+(2x-2)=180 | | 8x=4.09 | | 8x+4(4x+3)=24x+16-4 | | (8x+6)+(9x-8)=-189 | | 2x-7(x+7)=-69 | | (10x+9)-(3x+5)=67 | | 4x-7(x-9)=-78 | | (7x+4)-(12x-5)=34 | | 9k-2(5k+3=-7 | | 6(x+9)-5x=45 | | 4x-5(x-5)=-13 | | 8(x+9)-3x=17 | | -25=-27+6x | | 2(5x-3)=6 | | 2.8+.25q=15.05 | | (3x-7)(5+2x)=5 |